An Introduction to Energy Management

Presented By

Tahir Hakim

for

BERLIN CONSULT GCC

Notice

- This Publication is the property and copyright of Berlin Consult GCC with All Rights Reserved;
- This Publication may be viewed for educational purposes only;
- No part of any publication may be reproduced or transmitted in any form or by any means, including printing and emailing, without the written permission of the copyright holder, application for which should be addressed to the same. Such written permission must also be obtained before any part of the publication is stored in a retrieval system of any nature;
- This publication is made available with the understanding that neither the author(s), owner nor the publisher is thereby engaged in rendering a specific legal or any other professional service;
- While every effort has been made to ensure the accuracy and completeness of this publication, no warranty or fitness is provided or implied, and the author(s), owner and publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damage arising from their use.

Introduction

- What is Energy Management ?
- Why Do It?
- Financial Impact
- How is it Done?
 - o ISO 50001
 - Strategic Framework
 - Potential Actions
 - Assessment & Selection
- Other Issues
- Framework for the Future
- Questions

What is Energy Management?

- Planned and Implemented Measures
 - Use minimum possible energy while meeting the true needs of facility.
- To save and/or make efficient use of energy through:
 - Energy Conservation
 - Energy Recovery
 - Energy Substitution

Why do Energy Management?

- Reduce Costs
 - Utility Costs
 - Non-Energy Related Costs (i.e. O&M)
- Improve Revenues
 - Improved Plant Utilisation
 - "Re-invest" Savings in New Processes
- Control Risks
 - Control of Emissions / Reduce CO2
 - Reduce Exposure to Market Volatility

Financial Impact

1 AED Saved = 1 AED Operating Profit

Example:

Unit/Product Price = AED50 Profit Margin = 10%

If Energy Saving = AED100,000 then:

<u>AED100,000</u> = AED1,000,000 Revenue Equivalent 10%

Saving AED100,000 has the same impact as selling 20,000 more units

Financial Impact

Smaller Margins = Greater Revenue Equivalent

Example:

Unit/Product Price = AED50

Savings = AED100,000

Profit Margin	Revenue Equivalent	Unit Sales Equivalent
20%	AED 500,000	10,000
15%	AED 666,666	13,333
10%	AED1,000,000	20,000
5%	AED2,000,000	40,000

How to Do It?

- Review Energy Strategy
 - Current & Future Energy Usage
 - Energy Distribution & Generation
- Energy Audit
 - Where & How Energy Used
 - Calculate Energy Baseline
- Action Plans to Reduce Energy

ISO 50001 - Overview

Source: ISO 50001 Standard

Plan-Do-Check-Act

- Energy Policy
- Energy Planning
 - Audits
 - Baseline
- Action Plans
- Check
 - Monitor, Measure & Evaluate
- Review & Reset

Strategic Framework

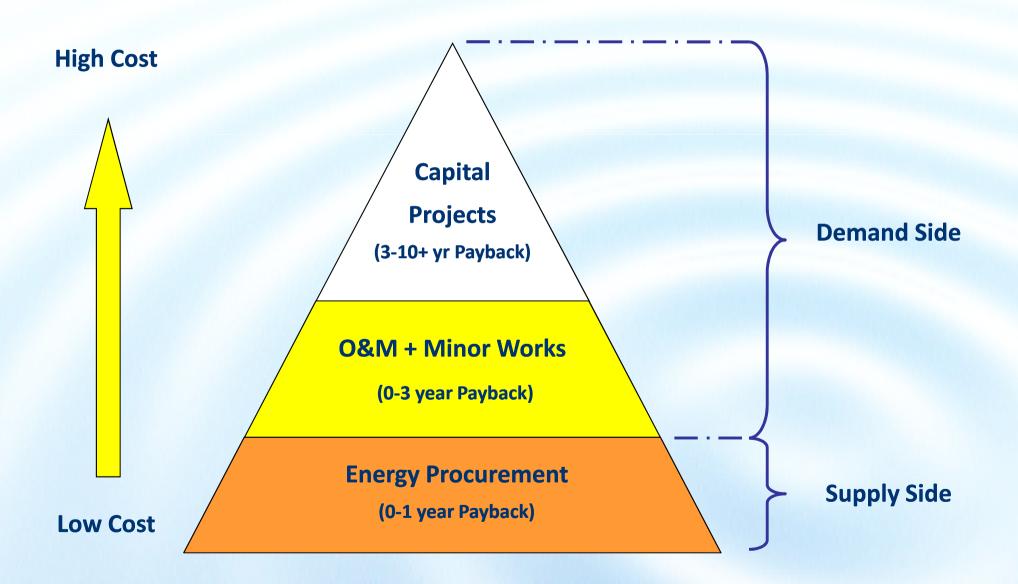
- What is our Future at this location ?
- What are the limitations of the facility?
- Are there any legal/technical restrictions?
 - Specific Business Objectives / Issues
 - Are we allowed to generate our own electricity?
 - o Is there an open Electricity Market? ... etc.
- What Energies do we use & how do we buy?
- What are our investment & borrowing criterion ?

Typical Systems

Dwellings

- Lighting
- Cooling (Splits)
- Hotwater
- Dom. Appliances
- Heating (N-Hemi)

Commercial


- Lighting
- AHUs & Ventilation
- Cooling / Chillers
- HWS
- Lifts / Elevators
- Office Equipment
- IT / Server Centre
- Controls / BMS
- Heating (N-Hemi)

Industrial

- Lighting
- HVAC Systems
- Process Chillers
- Process Steam / Heat
- Compressed Air
- HWS
- Generators
- Controls / PMS
- Process Machinery
- Heating (N-Hemi)

Cost Benefit Ratio

Approach to 'Actions'

- No / Insignificant Cost
 - Review Energy Supply Contracts
 - Energy Usage & Reduction Awareness Programme
 - Perform Energy Survey
 - Review Design & Operation Parameters
- LOW COSt (Requiring Little or No Design Change)
 - Consumables Replacement
 - Optimisation of Plant & Equipment
 - Energy Usage Monitoring & Targeting
- Medium Cost (Requiring Some Investment and/or Design Change)
 - Energy Recovery Systems and Plant Optimisation
- High Cost (Requiring Significant Investment and/or Design Change)
 - Plant & Equipment Renewal and/or New Installation

Action Examples

Low Cost

- Use Low-Energy Light-fittings when Replacing Lamps
- Re-commission and Set-up Systems (i.e. Hydraulic Balancing of HVAC)
- Install Motion Sensors to Lighting Control or Time Clocks for External Lights
- Installation of Variable Speed Drives on Motors

Medium Cost

- o Building Management or Plant Management System Installation
- Thermal Recovery Wheels on Air-conditioning Systems
- Heat Recovery/Run Around Coils etc. (i.e. AHUs, Compressed Air etc.)
- Boiler Economisers, Condensing Economiser

High Cost

- Check/Replace/Update Building Fabric (Cladding, Windows etc...) Installations
- Co-generation Plant Installation
- Renewable Energy Plant Installation (i.e. Bio-gas, Wood, Solar etc...)
- Overnight Cooling /Ice Storage

Financial Returns

Payback & Internal Rates of Return		DO the Project if your cost of borrowing is lower than this IRR						
Simple Payback (Years)	8						0%	
	5					0%	12%	
	4				0%	8%	13%	
	3			0%	13%	20%	29%	
	2		0%	23%	35%	41%	48%	
	1	0%	62%	85%	93%	97%	100%	
Equipment Life, or Project Timescales (Years)		1	2	3	4	5	8	

SOURCE: U.S. EPA: "Putting Energy into Profits"

Selecting Solutions

- Implement 'No Cost' Options First
- Select optimum combination of Actions
- Multiple Action Savings are NOT always added
- Cumulative Savings on inter-dependent actions must be assessed CAREFULLY...!!
- Do NOT prioritise from 'Low Cost' to 'High Cost'

Other Issues

- Expertise in UAE / GCC Market
- Degree Days Data in UAE
- Contractual Issues
 - Consultancy Fee
 - Shared Savings
- ESCOs
- Contract Energy Management
- Impact of O&M of Facility

Framework for Future

- Energy Managers Register
 - Set minimum standards for Consultants & ESCOs
- Model Contracts
 - Consultancy, Shared Savings etc.
- Data & Resources
 - Degree Day Data
 - Benchmarks
 - Energy Management Guidance Handbook
- Develop Client Competence
 - Selecting Partners / Consultant
 - Implementing Contracts
 - Reviewing Recommended Solutions / Projects
 - Measuring Performance
 - Benchmarking & Reporting

Thank You

Presented By

Tahir Hakim BSc MBA CENG CENV MEI MASHRAE

BERLIN CONSULT GCC

Web: <u>www.berlinconsultgcc.com</u>

Phone: +971 50 159 1865

Email: contact@berlinconsultgcc.com